Regulated Fox-2 isoform expression mediates protein 4.1R splicing during erythroid differentiation.
نویسندگان
چکیده
A regulated splicing event in protein 4.1R pre-mRNA-the inclusion of exon 16-encoding peptides for spectrin-actin binding-occurs in late erythroid differentiation. We defined the functional significance of an intronic splicing enhancer, UGCAUG, and its cognate splicing factor, mFox2A, on exon 16 splicing during differentiation. UGCAUG displays cell-type-specific splicing regulation in a test neutral reporter and has a dose-dependent enhancing effect. Erythroid cells express 2 UGCAUG-binding mFox-2 isoforms, an erythroid differentiation-inducible mFox-2A and a commonly expressed mFox-2F. When overexpressed, both enhanced internal exon splicing in an UGCAUG-dependent manner, with mFox-2A exerting a much stronger effect than mFox-2F. A significant reciprocal increase in mFox-2A and decrease in mFox-2F occurred during erythroid differentiation and correlated with exon 16 inclusion. Furthermore, isoform-specific expression reduction reversed mFox-2A-enhancing activity, but not that of mFox-2F on exon 16 inclusion. Our results suggest that an erythroid differentiation-inducible mFox-2A isoform is a critical regulator of the differentiation-specific exon 16 splicing switch, and that its up-regulation in late erythroid differentiation is vital for exon 16 splicing.
منابع مشابه
The RNA Binding Protein RBM38 (RNPC1) Regulates Splicing during Late Erythroid Differentiation
Alternative pre-mRNA splicing is a prevalent mechanism in mammals that promotes proteomic diversity, including expression of cell-type specific protein isoforms. We characterized a role for RBM38 (RNPC1) in regulation of alternative splicing during late erythroid differentiation. We used an Affymetrix human exon junction (HJAY) splicing microarray to identify a panel of RBM38-regulated alternat...
متن کاملCharacterization of multiple isoforms of protein 4.1R expressed during erythroid terminal differentiation.
In erythrocytes, 80-kD protein 4.1R regulates critical membrane properties of deformability and mechanical strength. However, previously obtained data suggest that multiple isoforms of protein 4. 1, generated by alternative pre-mRNA splicing, are expressed during erythroid differentiation. Erythroid precursors use two splice acceptor sites at the 5' end of exon 2, thereby generating two populat...
متن کاملAn erythroid differentiation-specific splicing switch in protein 4.1R mediated by the interaction of SF2/ASF with an exonic splicing enhancer.
Protein 4.1R is a vital component of the red blood cell membrane cytoskeleton. Promotion of cytoskeletal junctional complex stability requires an erythroid differentiation stage-specific splicing switch promoting inclusion of exon 16 within the spectrin/actin binding domain. We showed earlier that an intricate combination of positive and negative RNA elements controls exon 16 splicing. In this ...
متن کاملMarked difference in membrane-protein-binding properties of the two isoforms of protein 4.1R expressed at early and late stages of erythroid differentiation.
Two major isoforms of protein 4.1R, a 135 kDa isoform (4.1R(135)) and an 80 kDa isoform (4.1R(80)), are expressed at distinct stages of terminal erythroid differentiation. The 4.1R(135) isoform is exclusively expressed in early erythroblasts and is not present in mature erythrocytes, whereas the 4.1R(80) isoform is expressed at late stages of erythroid differentiation and is the principal compo...
متن کاملAlternative 5' exons and differential splicing regulate expression of protein 4.1R isoforms with distinct N-termini.
Among the alternative pre-mRNA splicing events that characterize protein 4.1R gene expression, one involving exon 2' plays a critical role in regulating translation initiation and N-terminal protein structure. Exon 2' encompasses translation initiation site AUG1 and is located between alternative splice acceptor sites at the 5' end of exon 2; its inclusion or exclusion from mature 4.1R mRNA reg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 111 1 شماره
صفحات -
تاریخ انتشار 2008